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Abstract

An analytic solution is presented for the two-dimensional thermoelastic problem of multiple interacting circular
inhomogeneities of di�erent sizes and thermoelastic properties embedded in an isotropic elastic medium. Based upon
the complex potentials of Muskhelishvili, the analytic solution is derived for the single circular inhomogeneity

problem under arbitrary thermal loadings. The solution is then applied to the problem of an in®nitely extended
medium containing randomly located multiple inhomogeneities successively. This procedure leads to a series solution
derived with perturbation technique. Study examples show the elegance and robustness of the present approach. The

results reveal the dependence of the resulting thermal stresses upon the mismatch of the thermoelastic properties and
the con®guration of the inhomogeneities. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The advanced engineering composite materials are bene®ted from taking of the dissimilar properties
of di�erent materials with superior properties. However, the large mismatch in thermoelastic properties
of the di�erent material phases in advanced composites produces severe thermal stresses under thermal
loading. For example, the high residual thermal stresses developed in a metal matrix composite during
cooling from consolidation temperatures may be large enough to initiate microcracks in the matrix
phase adjacent to the ®ber/matrix interface or plastic yielding before application of external forces.
Along or combined with stresses caused by external forces, the thermal stresses can be the cause of
brittle fracture and fatigue failure (Co�n, 1954; Manson, 1954), plastic damages (Parkes, 1954),
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deterioration in material properties (Fazekas, 1953). Such problems have focused interest on the thermal
stresses induced by the mismatch of di�erent materials in composites, which can be idealized as a two-
dimensional thermoelastic problem of circular inhomogeneities embedded in an isotropic medium.

The problem has been extensively studied for single inhomogeneity under particular loading
conditions, e.g., the works of Mindlin and Cooper (1950), Florence and Goodier (1959, 1960, 1963),
Tauchert (1968), Podil'chuk and Kirilyuk (1988), Edmonds and Tweed (1988), Lee and Choi (1989),
Theocaris and Bardzokas (1989), Zashkil'nyak (1990), Goshima and Miyao (1990), Lee (1991), Hasebe
et al. (1992), Chandrasekharaiah and Murthy (1993), and Kattis and Meguid (1995). Recently further
attentions have been paid to the composite materials containing two interacting inhomogeneities or an
in®nite number of periodically distributed inhomogeneities, e.g., Yamada (1989, 1990), Kouris and
Tsuchida (1991), Muller and Schmauder (1993). However, due to the inherent di�culty involved, few
attempts have been made to solve the problem of a medium containing randomly spaced multiple
interacting inhomogeneities of arbitrary sizes and di�erent thermoelastic properties subjected to an
arbitrary thermal loading.

The purpose of the present study is to provide an analytic solution to the two-dimensional
thermoelastic problem of multiple interacting circular inhomogeneities. The analysis is based upon the
complex stress and temperature potentials of Muskhelishvili (1955) and the Laurent expansion method
in solving the problem of a single inhomogeneity. The solution for a single inhomogeneity is then
applied successively to the problem of multiple inhomogeneities by an appropriate superposition. The
resulting problem is solved by perturbation technique. An excellent agreement between the present and
previous results for one and two inhomogeneities is observed. The interaction of multiple
inhomogeneities (up to 5) has been studied and the dependence of thermal stresses upon the mismatch
of thermoelastic properties of inhomogeneity and matrix phases and the con®guration of inhomogeneity
is discussed.

This article has been divided into ®ve sections. Following this brief introduction, Section 2 gives the
governing equations and the analytic solution for the single circular inhomogeneity problem. Section 3
describes the successive series approach for the solution of the multiple interacting circular
inhomogeneity problem. These inhomogeneities may have di�erent thermoelastic properties and sizes.
The con®guration of the inhomogeneities is arbitrary provided that they do not overlay. Section 4 is
devoted to the application of the analytic solution obtained. A number of cases were discussed. Section
5 concludes the article.

2. Theoretical development

2.1. The governing equations

In plane thermoelastic problems, the temperature change T, the heat ¯ux �qx, qy�, the displacements
�u, v� and the stresses �sx, sy, txy� of the uncoupled stationary thermoelastic problem can be expressed in
terms of Muskhelishvili (1953) complex potentials W�z�, f�z� and c�z� as

T �W�z� �W�z� �1�

qx � ÿk
�
W 0�z� �W 0�z�

�
�2�

qy � ÿik
�
W 0�z� ÿW 0�z�

�
�3�
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Q �
�
qn ds � ik�W 0�z� ÿW 0�z�� �4�

2m�u� iv� � kf�z� ÿ zf 0�z� ÿ c�z� � A

�
W�z� dz �5�

sx � sy � 2�f 0�z� � f 0�z�� �6�

sy ÿ sx � i2txy � 2� �zf 00�z� � c 0�z�� �7�
with

Plane strain: k � 3ÿ 4v A � 4ma�1� v�
Plane stress: k � �3ÿ v�=�1� v� A � 4ma

where Q is the total heat ¯owing into an area and m, v, k, a are the shear modulus, Poisson's ratio,
thermal conductivity and coe�cient of linear thermal expansion, respectively. The overbar in eqns (1)±
(7) represents the complex conjugate and the prime denotes di�erentiation with respect to the argument.

The components of stresses can also be expressed in polar coordinates as:

sy � sr � 2�f 0�z� � f 0�z�� �8�

sr ÿ itry � f 0�z� � f 0�z� ÿ zf 00�z� ÿ z

z
c 0�z� �9�

where z � reiy. The corresponding Airy's stress function U is determined by f�z� and c�z�
U � Re � �zf�z� � w�z�� with w 0�z� � c�z� �10�

Consider an in®nite isotropic elastic matrix containing a number of circular inhomogeneities, which
may be ®nite or in®nite, subjected to an arbitrary stationary thermal loading at in®nity as shown in Fig.
1. It is assumed that the inhomogeneities are perfectly bonded to the matrix and no heat source exists in
the matrix and the inhomogeneity. Without loss of generality, con®ne our attention to the j-th circular
inhomogeneity with radius Rj centered at the origin Oj of the local coordinate systems �xj, yj � and
�rj, yj �. All the quantities associated with the j-th inhomogeneity are distinguished by the subscript j.

The assumption of perfect bondness between the inhomogeneity and the matrix leads to the
continuity of the temperature T, the total heat ¯ow Q, the displacements �u, v� and the stresses �sr, try�
across the interface between the matrix and the inhomogeneity, such that,

TM � TI �11�

QM � QI �12�

�u� iv�M � �u� iv�I �13�

�sr ÿ itry�M � �sr ÿ itry �I �14�
where the subscripts `M' and `I' represent the matrix and the inhomogeneity, respectively.
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Substituting eqns (1), (4), (5), (9) into (11)±(14), the continuity conditions at the interface between the
matrix and the inhomogeneity can be expressed in terms of the complex potentials, such as,

W�tj � �W�tj � �Wj�tj � �Wj�tj � �15�

W�tj � ÿW�tj � � lj�Wj�tj � ÿWj�tj �� �16�

Gj�kf�tj � ÿ tjf
0�tj � ÿ c�tj � � A

�
W�tj � dz� � kjfj�tj � ÿ tjf

0
j �tj � ÿ cj �tj � � Aj

�
Wj�tj � dz �17�

f 0�tj � � f 0�tj � ÿ tjf
00�tj � ÿ tj

�t j
c 0�tj � � f 0j �tj � � f 0j �tj � ÿ tjf

00
j �tj � ÿ

tj
�t j
c 0j �tj � �18�

where the potentials with subscript j are de®ned inside the inhomogeneity. The variable tj � Rje
iy is a

point along the interface and the symbols lj � kj=k and Gj � mj=m are the normalized heat conductivity
and shear modulus of the j-th inhomogeneirty, respectively.

2.2. Heat conduction solution

The heat conduction continuity conditions (15) and (16) can be further simpli®ed into one equation
by adding the two equations

W�tj � � 1� lj
2

Wj�tj � � 1ÿ lj
2

Wj�tj � �19�

Fig. 1. A set of inhomogeneities in an isotropic elastic matrix.
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Let W0�zj � be a holomorphic temperature potential corresponding to the temperature state at in®nity,
the general solution of the heat conduction problem of a single inhomogeneity can be easily derived
from eqn (19) as,

Wj�zj � � 2

1� lj
W0�zj � ÿ 1ÿ lj

1� lj
T10

ÿkzjkERj

�
W�zj � �W0�zj � � 1ÿ lj

1� lj

"
W0

 
R2

j

zj

!
ÿ T10

# ÿ
RjEkzjk

�
9>>>>>=>>>>>;

�20�

The temperature potential W0�zj � at in®nity can be further expended into Taylor series such as,

W0�zj � � T10 �
X1
n � 0

T1n � 1z
n � 1
j , Im

ÿ
T10

� � 0 �21�

where T10 , T1n � 1 are unknown coe�cients. If the temperature ®eld at in®nity is known, one can easily
determine the unknown coe�cients T10 , T1n � 1 by substituting W0�zj � into eqn (1).

Obviously, the temperature complex potentials in eqn (20) constructed in this way satisfy the
continuity conditions (15) and (16) and the boundary condition at in®nity. When the potential W0�zj � is
determined by the temperature boundary condition at in®nity, the temperature complex potentials in the
matrix and the inhomogeneity are automatically determined by eqn (20).

2.3. Thermoelastic solution

Let the thermoelastic state of the matrix containing an inhomogeneity be subjected to a known
temperature ®eld. Since no singularities are assumed to reside inside or on the boundary of the
inhomogeneity, fj�zj � and cj�zj � must be holomorphic in the inhomogeneity and f�zj � and c�zj � in an
annulus region of the matrix bounded by certain concentric circles, as shown in Fig. 1. Assume these
stress complex potentials can be expanded into Taylor and Laurent series in their respective regions
(Isida, 1973; Meguid and Zhu, 1995), such that,

fj�zj � �
X1
n � 0

Hn, jz
n � 1
j

ÿkzjkERj

�
cj�zj � �

X1
n � 0

Ln, jz
n � 1
j

ÿkzjkERj

�
9>>>>>=>>>>>;

�22�

f�zj � � ÿDR2
j

�T
1
1 ln �zj � �

X1
n � 0

�
Mn, jz

n � 1 � Fn, jz
ÿ�n � 1�

� ÿ
RjEkzjk

�
c�zj � � ÿDR2

j T
1
1 ln �zj � �

X1
n � 0

�
Kn,jz

n � 1 �Dn,jz
ÿ�n � 1�

� ÿ
RjEkzjk

�
D � A

ÿ
1ÿ lj

�
�1� k�ÿ1� lj

�

9>>>>>>>>>>=>>>>>>>>>>;
�23�

where Hn,j, Ln,j,Mn,j, Fn,j, Kn,j, Dn,j are unknown coe�cients. The constant terms corresponding to rigid
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body displacements in eqns (22) and (23) have been ignored since they have no e�ect on the stresses.
The ®rst term in eqn (23) is introduced to ensure the single-value displacement condition.

By substituting eqns (22) and (23) into the stress and displacement continuity conditions (17) and (18)
and comparing the coe�cients of various powers of eiy at both sides, the following relations between the
unknown coe�cients in the complex potentials can be derived as

H0, j �
ÿ
1ÿ aj

�ÿ
1ÿ gjbj

�
1ÿ ajbj

M0, j � �
aj ÿ gj �

ÿ
1ÿ bj

�
1ÿ ajbj

M0, j � LjT
1
0

Hn, j �
ÿ
1ÿ aj

�
Mn, j � Pj

n� 1
T1n �ne1�

Ln, j �
ÿ
1ÿ bj

�
Kn, j � �n� 3�ÿaj ÿ bj

�
Mn�2, jR2

j ÿPjT
1
n�2R

2
j

� Oj

ÿ
1ÿ lj

�
�1� n�ÿ1� lj

�T1n�2R2
j �ne0�

9>>>>>>>>>>>>=>>>>>>>>>>>>;
�24�

and

Fn, j � ÿbjKn,jR
2n�2
j ÿ �n� 3�bjMn�2,jR2n�4

J � Oj

ÿ
1ÿ lj

�
�1� n�ÿ1� lj

�T1n�2R2n�4
j

D0;j � ÿ2gj Re �M0;j�R2
j � 2LjT

1
0 R2

j

D1, j � ÿajM1, jR
4
j �

"
Pj

2
� A

ÿ
1ÿ lj

�
�1� k�ÿ1� lj

�#T11 R4
j

Dn, j � ÿ�nÿ 1�bjKnÿ2,jR2n
j ÿ ��n2 ÿ 1�bj � aj�Mn,jR

2n�2
j

� Pj

1� n
T1n R2n�2

j � Oj
1ÿ lj
1� lj

T1n R2n�2
j �ne2�

9>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>;

�25�

where

aj � kj ÿ Gjk
Gj � kj

bj �
1ÿ Gj

1� Gjk
gj �

aj ÿ bjÿ
1ÿ bj

�ÿ bj
ÿ
1ÿ aj

�
Oj � GjA

1� Gjk
Lj � GjAÿ Aj

2Gj � kj ÿ 1
Pj � A

Gj � kj

 
Gj ÿ 2Ajÿ

1� lj
�
A

!
9>>>>>=>>>>>;

�26�

Eqns (22)±(25) constitute the general expressions of the stress complex potentials which satisfy the
continuity conditions across the interface between the inhomogeneity and the matrix for a single circular
inhomogeneity. The thermoelastic problem is thus reduced to solve the two independent unknown
coe�cients Mn, j and Kn, j with speci®c geometry and external force conditions of the surrounding matrix.
Once they are known, the stresses and displacements throughout the whole ®eld are automatically
determined by eqns (5)±(7) and (22)±(25).

In order to verify the present solution, let us consider a single circular inhomogeneity in an in®nite
matrix subjected only to a linear temperature change at in®nity. An inhomogeneity of radius R1 is
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assumed to be centered at the origin O1 of the local coordinate systems �x1, y1� and �r1, y1�. The
temperature state at in®nity is given in the local coordinate system as

T1 � T0 ÿ q

k
r1 cos �y1 ÿ o � �27�

where T0, q and o represent the uniform temperature change, constant heat ¯ux and the angle which
the direction of heat ¯ux makes with the positive x1-axis.

By applying the solution derived above, the closed form solution for temperature and thermal stresses
in the matrix induced by the presence of the inhomogeneity is obtained as

T � T0 ÿ q

k

�
r1cos �y1 ÿ o � � 1ÿ l1

1� l1

R2
1

r1
cos �y1 ÿ o �

�

sr � L1T0
R2

1

r21
ÿ A

1� k
qR1

k

"
1� k
A

P1

2

R3
1

r31
ÿ 1ÿ l1

1� l1

 
1ÿ R2

1

r21

!
R1

r1

#
cos �y1 ÿ o �

sy � ÿL1T0
R2

1

r21
� A

1� k
qR1

k

"
1� k

A

P1

2

R3
1

r31
� 1ÿ l1

1� l1

 
1� R2

1

r21

!
R1

r1

#
cos �y1 ÿ o �

try � ÿ A

1� k
qR1

k

"
1� k
A

P1

2

R3
1

r31
� 1ÿ l1

1� l1

 
1ÿ R2

1

r21

!
R1

r1

#
sin �y1 ÿ o �

The stress solution reduces to the solution of Kattis and Meguid (1995) under the condition of plane
stress and o � p=2. Under more speci®c assumption of a rigid inclusion �L1 � 2m�aÿ a1�, P1 � 4m�aÿ
2a1�1� l1��� or a traction-free and insulated hole �L1 � P1 � 0�, the above stress solution reduces to the
exiting solutions of Lee and Choi (1989) or Florence and Goodier (1960), respectively.

3. Solution of multiple interacting inhomogeneities

3.1. Heat conduction solution of multiple inhomogeneities

Now let us extend our attention to the problem of multiple interacting inhomogeneities. Consider an
in®nite matrix containing N distinct circular inhomogeneities subjected to an arbitrary thermal loading
at in®nity as shown in Fig. 1. Let �xj, yj � and �rj, yj � denote the rectangular Cartesian and polar
coordinate systems with their origin Oj at the center of the j-th inhomogeneity whose radius is
Rj � j � 1, 2, . . . , N �. The distance between the j-th and k-th inhomogeneities is denoted by djk and the
inclination angle measured from xj-axis to the line OjOk by yjk. De®ne the dimensionless coordinates,
complex variables and parameters by

zj �
zj
d
, ljk � djk

d
,

Rj

d
� eSj, Sj � Rj

R
, e � R

d
�28�

where d and R are arbitrary reference length and radius.
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From eqn (20), the temperature complex potential in the matrix is de®ned as the following sum of
(N� 1) functions:

W
ÿ
zj
� �W0

ÿ
zj
��XN

k�1

1ÿ lk
1� lk

"
Wk

 
S2
ke

2

zk

!
ÿ T0,k

# ÿ
eSjEkzjk

� �29�

with

W0 � T10 �
X1
n � 0

T1n�1z
n�1
j , Im

ÿ
T10

� � 0 �30�

where W0�zj � is a holomorphic temperature complex potential in j-th inhomogeneity coordinates,
corresponding to the temperature state at in®nity in the absence of the inhomogeneity.

Since no heat source exists inside the inhomogeneity, the potential Wk�zk� representing the presence of
k-th inhomogeneity is holomorphic and can be expressed in terms of k-th inhomogeneity coordinates in
Taylor series form as

Wk�zk � � T0,k �
X1
n � 0

Tn�1,kzn�1k , Im
ÿ
T0,k

� � 0 �kzkkEeSk � �31�

where Tn,k are unknown coe�cients to be determined.
The temperature potential W�zj � constructed in this manner satis®es automatically the boundary

conditions at in®nity and only the continuity condition along the interface of inhomogeneity needs to be
checked. To check the local continuity condition, it is convenient to express the temperature potential
W�zj � in terms of j-th inhomogeneity local coordinates. The transformation relationship between the j-th
and the k-th inhomogeneity coordinates is

zk � zj ÿ ljk eiyjk �32�
Substituting eqn (32) into (29) and expanding it into Taylor series form with respect to zj in an annulus
region of eSjEkzjkEe, the temperature potential W�zj � in eqn (29) is reduced to

W
ÿ
zj
� � T10 �

X1
n � 0

Tn�1,jzn�1j � 1ÿ lj
1� lj

X1
n � 0

Tn�1,j
S2n�2
j

zn�1j

e2n�2 �33�

where

Tn,j � T1n �
X1
p � 0

XN
k 6� j

1ÿ lk
1� lk

a
p,k
nÿ1, jTp�1, kS

2p�2
k e2p�2 �n � 0, 1, 2, . . . �

a
p,k
n,j �

� ÿ 1� p�1
l
n�p�2
jk

�
n� p� 1

p

�
eÿi�n�p�2�

y
jk

9>>>>>>=>>>>>>;
�34�

In order to solve the unknown coe�cients Tn, j, assume they can be expressed as the power series of
e2q,

Tn, j �
X1
q � 0

T
�2q�
n, j e

2q �35�

Z.H. Zhu, S.A. Meguid / International Journal of Solids and Structures 37 (2000) 2313±23302320



where T
�2q�
n,j are another set of unknown coe�cients to be determined. By substituting eqn (35) into (34)

and comparing the coe�cients of various powers of e2q at both sides, the recurrence formulae of T
�2q�
n,j

are obtained as:

T
�0�
n, j � T1n

T
�2q�
n, j �

XN
k 6� j

Xqÿ1
p � 0

1ÿ lk
1� lk

a
p,k
nÿ1,jS

2p�2
k T

�2qÿ2pÿ2�
p�1,k �ne0, qe1�

Eqn (36) constitutes the necessary consistency equations for determining the unknown coe�cients
Tn, j �n � 0, 1, 2, . . . ; j � 1, 2, . . . , N � successively. The temperature potential inside the j-th
inhomogeneity can then be easily determined by eqn (20).

3.2. Thermoelastic stress solution of multiple inhomogeneities

Assume the Airy's stress function in the matrix is expressed as the following sum of N� 1 functions

U � U0 �
XN
k�1

Uk �37�

where U0 represents the stress state at in®nity in the homogeneous matrix and Uk the presence of k-th
inhomogeneity. The stress function Uk is de®ned in the k-th inhomogeneity coordinates, such as,

Uk � Re
h
�zkfk
�zk � � w

k
�zk �

i
with w 0

k
�zk � � c

k
�zk �

f
k
�zk � � ÿ

A

1� k
1ÿ lk
1� lk

S2
ke

2T1,k ln �zk � �
X1
n � 0

Fn,kz
ÿ�n�1�
k �eSkEkzkk�

c
k
�zk � � ÿ

A

1� k
1ÿ lk
1� lk

S2
ke

2T1,k ln �zk � �
X1
n � 0

Dn,kz
ÿ�n�1�
k �eSkEkzkk�

9>>>>>>>>>=>>>>>>>>>;
�38�

The ®rst term in eqn (38) is introduced to ensure the single-value displacement condition. The Airy's
stress function U in eqn (37) constructed in this way satis®es automatically the boundary conditions at
in®nity and only the local continuity condition across the interface between the inhomeneity and the
matrix needs to be checked. If we concentrate our attention on thermal e�ect only and assume a free
stress state at in®nity, the stress function U0 in eqn (37) becomes zero.

Substituting coordinate transformation (32) into (38), expanding the stress functions into Laurent
series with respect to variable zj in an annulus region of eSjEkzjkEe, and omitting the constant terms
which have no contribution to stresses, the stress functions in eqn (38) are reduced to the same form of
the stress functions for one circular inhomogeneity in eqn (23)

U � Re
h
�z jf

ÿ
zj
�� w

ÿ
zj
�i

with w 0�zk � � c�zk �

9>>>>>>=>>>>>>;
(36)

Z.H. Zhu, S.A. Meguid / International Journal of Solids and Structures 37 (2000) 2313±2330 2321



f
ÿ
zj
� � ÿ A

1� k
1ÿ lj
1� lj

S2
j e

2T1,jln
ÿ
zj
�� X1

n � 0

�
Mn,jz

n�1
j � Fn,kz

ÿ�n�1�
j

� ÿ
eSjEkzjkEe

�
c
ÿ
zj
� � ÿ A

1� k
1ÿ lj
1� lj

S2
j e

2T1,jln
ÿ
zj
�� X1

n � 0

�
Kn,jz

n�1 �Dn,jz
ÿ�n�1�
j

� ÿ
eSjEkzjkEe

�
9>>>>>=>>>>>;

�39�

where

Mn,j �
XN
k 6� j

ckn,jT1,kS
2
ke

2 �
X1
p � 0

XN
k 6� j

a
p,k
n,j Fp,k

Kn,j �
XN
k 6� j

�
T1,k ÿ �n� 1� eÿi2cjkT1,k

�
ckn,jS

2
ke

2 �
X1
p � 0

XN
k 6� j

�
a

p,k
n,j Dp,k � b

p,k
n,j Fp,k

�
b

p,k
n,j �

� ÿ 1� p
l
n�p�2
jk

�
n� p� 2

p

�
�n� 2� eÿi�n�p�4�yjk

ckn,j �
A

1� k
1ÿ lk
1� lk

eÿi�n�1�yjk

�n� 1�l n�1jk

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

�40�

Analog to the solution for the single inhomogeneity, the stress functions inside the j-th inhomogeneity
can be expressed as

fj

ÿ
zj
� � X1

n � 0

Hn,jz
n�1
j

ÿkzjkEeSj

�
cj

ÿ
zj
� � X1

n � 0

Ln,jz
n�1
j

ÿkzjkEeSj

�
9>>>>>=>>>>>;

�41�

Substituting eqns (39)±(41) into the local stress and displacement continuity conditions (17) and (18)
along the inhomogeneity/matrix interface and comparing the coe�cients of various powers of eiy at both
sides, we obtain the same relationship among the coe�cients Hn,j, Ln,j, Fn,j, Dn,j,Mn,j, and Kn,j as shown
in eqns (24) and (25).

In order to solve the unknown coe�cients Mn,j, Kn,j, Fn,j and Dn,j, assume they can be expressed as the
power series of e2q, such that

Mn,j �
X1
q�0

M
�2q�
n,j e2q, Kn,j �

X1
q�0

K
�2q�
n,j e2q

Fn,j �
X1

q�n�1
F
�2q�
n,j e2q, Dn,j �

X1
q�n

D
�2q�
n,j e2q

9>>>>>=>>>>>;
�42�

where M
�2q�
n,j , K

�2q�
n,j , F

�2q�
n,j , D

�2q�
n,j are new sets of unknown coe�cients to be determined. Substituting eqn

(42) into (25) and (40) and comparing the coe�cients of various powers of e2q at both sides, we obtain
the following recurrence formulae for these new coe�cients:
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M
�0�
n,j � K

�0�
n,j � 0 �ne0�

F
�2n�2�
n,j � 0 �ne0�

D
�0�
0,j � D

�2�
1,j � D

�2n�
n,j � 0 �ne2�

M
�2�
n,j �

XN
k 6� j

�
a0,kn,j F

2
0,k � ckn,jT1,kS

2
k

�
�ne0�

K
�2�
n,j �

XN
k 6� j

�
a0,kn,j D

2
0,k � b0,kn,j F

�2�
0,k

�
�
XN
k 6� j

�
T1,k ÿ �n� 1� eÿi2yjkT1,k

�
ckn,jS

2
k �ne0�

F
�2n�2q�
n,j � ÿbjK�2qÿ2�n,j S2n�2

j ÿ �n� 3�bjM�2qÿ4�n�2,j S2n�4
j

� Oj

1� n

1ÿ lj
1� lj

Tn�2,jS2n�4
j d2,q �ne0, qe2�

D
�2q�
0,j � ÿ2gjRe

h
M
�2qÿ2�
0,j

i
S2
j � 2LjT0,jS

2
j d1,q �qe1�

D
�2q�
1,j � ÿajM

�2qÿ4�
1,j S4

j �
�
Pj

2
� A

1� k
1ÿ lj
1� lj

�
T1,jS

4
j d2, q �qe2�

D
�2n�2qÿ2�
n,j � ÿ�nÿ 1�bjK�2qÿ2�nÿ2,j S2n

j ÿ
h
�n2 ÿ 1�bj � aj

i
M
�2qÿ4�
n,j S2n�2

j

�
�

Pj

1� n
� Oj

1ÿ lj
1� lj

�
Tn,jS

2n�2
j d2,q �ne2, qe2�

M
�2q�
n,j �

XN
k 6� j

Xqÿ1
p � 0

a
p,k
n,j F

�2q�
p,k �ne0, qe2�

K
�2q�
n,j �

XN
k 6� j

Xq
p � 0

a
p,k
n,j D

�2q�
p,k �

XN
k 6� j

Xqÿ1
p � 0

b
p,k
n,j F

�2q�
p,k �ne2, qe2�

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

�43�

where di,j is the Kronecker delta.
Eqns (40), (42) and (43) constitute the necessary consistency equations for determining the unknown

coe�cients Mn,j, Kn,j, Fn,j, and Dn,j �n � 1, 2, . . . ; j � 0, 1, 2, . . . , N �. The coe�cients Hn,j and Ln,j for the
j-th inhomogeneity are then determined with eqn (24). All the unknown coe�cients in the complex
potentials can be determined successively as accurate as required.

4. Applications and discussions

The solution developed above was applied to some typical cases in this Section to show its capability
in solving problems of multiple interacting inhomogeneities. Since the closed form solution no longer
exists for the problems involving two or more inhomogeneities, an alternative numerical procedure is
adopted to obtain the solution. The numerical solution yields the coe�cients of the complex stress
potentials Tn,j,Mn,j, Kn,j, Fn,j, Dn,j, Hn,j, Ln,j. Then, the stresses and the displacements in the matrix and
the inhomogeneity can be determined by utilizing the complex stress potentials. One important thermal
loading, uniform temperature change, is considered here under the plane strain conditions. It has also
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been assumed that the value of Poisson's ratio equals to 0.3 for both the matrix and the inhomogeneity.
Finally, the thermal stress is normalized by s0 � 2m�aj ÿ a�T.

4.1. Two identical inhomogeneities

The present solution is ®rst veri®ed by two inhomogeneity problems. The two identical
inhomogeneities are placed on the x-axis with a center-to-center distance between inhomogeneities of
10R/3, where R is the radius of the inhomogeneity. The results of thermal stress sy in the matrix along
the inhomogeneity interface are plotted in Fig. 2 for discrete values of the elastic moduli. It is shown
that the presence of the inhomogeneities causes the stress concentration along the interface of the
inhomogeneity. The sti�er the inhomogeneity, the higher the stress concentration. Also shown in the
®gure is the interaction between the inhomogeneities, which a�ects the stress concentration along the
interface. This is evidenced by the di�erent stress values at y � 08 and 1808, which should be equal if
there were only one inhomogeneity. The present solution agrees with the existing result of Kouris and
Tsuchida (1991) exactly.

Fig. 2. Distribution of hoop stress along the left inhomogeneity interface in the matrix for two identical inhomogeneities.
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4.2. Three identical inhomogeneities

The second example is the case involving three identical inhomogeneities embedded in an in®nite
matrix. The centers of the inhomogeneities are at the vertices of an equilateral triangle with sides equal
to 3R, where R is the radius of the inhomogeneity. Due to the symmetry of the geometry and loading
condition, the results of the thermal stresses are presented for di�erent discrete values of elastic moduli
along one half of the interface of the right inhomogeneity. Fig. 3 shows the variation of the hoop stress
sy at both sides of matrix±inhomogeneity interface. The solid lines represent the interfacial hoop stress
in the matrix, while the dashed lines show it in the inhomogeneity. Compared with the results of the two
inhomogeneities under the same thermal loading condition, more interacting e�ects are observed among
the inhomogeneities leading to higher concentration of the stress. The stress concentration is
proportional to the elastic moduli of the inhomogeneity, as shown in the previous example. The
mismatch in the elastic and thermal properties of the two materials introduces tensile/compressive
stresses along the interface. This is evidenced by the presence of positive and negative hoop stresses at
the two sides of the interface. Interestingly, it is noticed that the stress concentration for hoop stress at
the matrix side is insensitive to the neighboring inhomogeneities when the elastic mismatch G � 3.

Fig. 3. Distribution of hoop stress along the right inhomogeneity interface for three identical inhomogeneities.
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Correspondingly, the stress concentration for hoop stress at the inhomogeneity side is less sensitive to
the neighboring inhomogeneities when the elastic mismatch G � 0:3.

The radial and shear stresses are shown to be continuous in Fig. 4. The shear stresses vary around
zero, while the radial stresses are all negative. If the coe�cient of thermal expansion of the
inhomogeneity is greater than that of the matrix, the nominal stress s0 is positive. Thus, the negative
normalized radial stress suggests a compressive stress, because the inhomogeneity expands faster than
the surrounding matrix. The mismatch of the elastic and thermal properties also introduces a stress
concentration. Similar to the hoop stress, the stress concentration for the radial and shear stresses is also
proportional to the elastic moduli of the inhomogeneity.

4.3. Five identical inhomogeneities

The next example involves the case of ®ve identical inhomogeneities embedded in an in®nite matrix.
Four inhomogeneities are located at the vertices of a square and one inhomogeneity at the center of the
square. The center-to-center distances between the central inhomogeneity and the surrounding ones are
equal to three times of the radius of the inhomogeneity, 3R. Fig. 5 shows the variation of the hoop
stress sy at both sides of the interface. The solid lines represent the interfacial hoop stresses in the
matrix, while the dashed lines show it in the inhomogeneity. The interfacial radial and shear stresses are
shown in Fig. 6 in which the shear stresses vary around the zero and the radial stresses are all negative.
Very strong interacting e�ects among the inhomogeneities are evidenced by the presence of more
variations in the stress concentration values. Again, the stress concentration for the hoop stress at the
matrix side is insensitive to the neighboring inhomogeneities when the elastic mismatch G � 3.

Fig. 4. Distribution of stresses along the right inhomogeneity interface for three identical inhomogeneities: (a) radial stress distri-

bution; and (b) shear stress distribution.
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Fig. 5. Distribution of hoop stress along the central inhomogeneity interface for ®ve identical inhomogeneities.

4.4. Five di�erent inhomogeneities

In the ®nal case, we examined the thermal stresses resulting from ®ve di�erent inhomogeneities in an
in®nite matrix. The spatial con®guration of the inhomogeneities is the same as the previous example of
®ve identical inhomogeneities. The size of the four inhomogeneities centering at the vertices of the
square are the same and their radii are R. The center-to-center distances between the central
inhomogeneity and the surrounding ones are equal to 3R. The size of the central inhomogeneity varies
from 0.5R to 1.8R. The material properties of each inhomogeneity, which is normalized by the material
property of the matrix, are listed as follows

Inhomogeneity Shear modulus G Thermal expansion a

Center 4 0.16
Right 20 0.08
Left 2 0.64

The results of the thermal stresses along the interface of the central inhomogeneity with varying radii
are calculated using the newly developed solution. The hoop stresses are shown in Fig. 7. The solid lines
represent the interfacial hoop stress in the matrix, while the dashed lines show it in the inhomogeneity.
The interfacial radial and shear stresses are depicted in Fig. 8. When the central inhomogeneity is quite
small �r=R � 0:5�, interacting e�ects among the di�erent inhomogeneities are very weak. These
interacting e�ects increase signi®cantly as the central inhomogeneity becomes larger �r=R � 1:8�. The
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Fig. 6. Distribution of stresses along the central inhomogeneity interface for ®ve identical inhomogeneities: (a) radial stress distri-

bution; and (b) shear stress distribution.

Fig. 7. Distribution of hoop stress along the central inhomogeneity interface for ®ve di�erent inhomogeneities.
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stress concentrations vary more signi®cantly in the region of 08EyE908, where the central
inhomogeneity faces the harder inhomogeneity (G � 20), than in the region of 908EyE1808, where the
central inhomogeneity faces the softer inhomogeneity (G � 2).

5. Conclusion

The present work provides a general solution to the problem of thermoelasticity of the multiple
interacting inhomogeneities embedded in an elastic matrix. The solution, which based upon the complex
potentials of Muskhelishvili and Laurent series expansion method for both heat conduction and
thermoelasticity problems, gives a general expression of the proposed complex potentials in the circular
inhomogeneities and the surrounding matrix under arbitrary thermal loading conditions. The main
feature of the approach is the repeated use of the solution for the single inhomogeneity problem by an
appropriate superposition. It reduces the multiple inhomogeneity problem to a system of linear algebraic
equations which can be solved with perturbation technique. The results of the work should be of interest
to those working in the ®elds of micromechanics and damage theory of composite materials.
Furthermore, if the stress function U0 in eqn (37) is determined by the stress state at in®nity, the present
solution can also be applied to the case of combined thermal loading and external forces. A number of
examples are presented in the paper. The validity of the present study is veri®ed by the excellent
coincidence of the present and existing solutions for the problems containing one or two
inhomogeneities. The capability of the present method in solving multiple interacting inhomogeneity
problems is demonstrated by problems involving three and ®ve inhomogeneities.

Fig. 8. Distribution of stresses along the central inhomogeneity interface for ®ve di�erent inhomogeneities: (a) radial stress distri-

bution; and (b) shear stress distribution.
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